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• Acute HIV infection- public health importance and 
challenges of research 

 

• Some lessons on HIV immunopathogenesis from 
acute infection studies (host restriction factors and 
CD8+ T cells)  

 

• Elite and viremic controllers 

 

• Lessons from viremic and elite controllers on viral 
control mechanisms 

Outline 



Acute HIV-1 infection- what lessons can we learn? 

Year 1 

Viral set point is a predictor for: 

- Rate of disease progression 

-Risk of transmission 

Key questions: 
• What behavioural, socioeconomic and biomedical factors are responsible for  
       continuing high incidence especially among young women? 
 
• What is the nature of the transmitted/founder virus? 
 
• What do immune responses in acute HIV-1 infection look like and why do they  
      ultimately fail in most cases? 
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Acute HIV infection viral load trajectory and set point 
 



B cell 

Th cell 

NK cell 

DC 

Innate Immunity 

CD8 T Cell Immunity 

Humoral immunity 

Host Factors 

CD4 T Cell Immunity 

Innate and 
adaptive immunity 

cross-talk 

Simple schema of the immune system 



Sites of Host Restriction Activity in HIV Life Cycle 

Engelman and Cherepanov, Nature Reviews Microbiology, 2012 



APOBEC3G: an intrinsic block to HIV 
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APOBEC3G H186R is associated with high viral load 
and rapid CD4 decline 

Reddy et. al., 2010, AIDS 



Patient A3G Genotype 
  A3G WT 
  A3G 186R/R 

Patient derived Vif clonal sequences cluster independently 
of APOBEC3G H186R genotype 



APOBEC3G variants: hypothesis and aims 

Hypothesis: The Vif protein adapts to APOBEC3G immune 

pressure according to APOBEC3G haplotypes with differential 

ability to inhibit HIV replication 

 

Specific Aims: 

1. Assessment of Vif genetic diversity according to genotypes 

with different infection outcomes 

2. Functionally characterize Vif variants from patients with 

different APOBEC3G genotypes and their ability to degrade 

APOBEC3G variants 
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Conclusions I 
• A3G WT and A3G-H186R are equally susceptible to counteraction 

by Vif. 
 
• A3G-H186R variant intrinsically displayed lower antiviral activity. 
 
 
• We speculate that A3G-H186R may have: 
 

• reduced deaminase activity.  
 
• inefficient packaging into virions. 

 

• Understanding sites of host/virus interaction can be targeted by 

novel therapy approaches for the treatment of HIV. 



Evidence for role of CTLs in HIV control 

• GWAS and importance of HLA in HIV 
• Viral escape can occur that abrogates immune recognition 

• In animal models, depletion of CTLs results in  
     uncontrolled viral replication 
 
• Breadth of Gag CTLs in chronic infection 
     correlates with better viral control 
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Protein-specificity of CD8 T cell responses and association with 
viral load 

Breadth of Gag 
responses at 8 weeks 
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Persistent Gag responses correlate with lower viral load set point 

Gag, 
50% 

Pol, 
30% 

Env, 
10% 

Nef, 
10% 

Persistent responses were defined as: 
 Responses that persisted over time and 

 
 Were detected in at least 3 time-points 4w, 6w, 8w, 14w, 

26w, and 52w post infection  



B C 

HIV-specific CD8+ T cells are numerous but defective 



• Nef-specific CD8+ T cell responses are 
immunodominant in acute HIV-1 infection but do not 
correlate with viral control.  

 

• Gag-specific immune responses associate with viral 
control in early (but not acute) HIV-1 infection. 

 

• Limited immunogenicity, transient  and defective 
immune responses may explain the failure of the 
immune system to contain the virus.   

 

Conclusions II 

Radebe et al, JID, 2011; Radebe et al, AIDS 2015 ; Gounder et al, PLoS One 2015; 
Ndhlovu et al, Immunity, 2016 
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j.immuni.2007.08.010 

Distinction between elite controllers and long-
term non-progressors 

• EC defined by VL <50 copies/ml 

• LTNP defined by ability to 
maintain normal CD4 counts 
for long period 

• 5%-15% of infected persons 
are LTNP  

• Less than 0.15% of infected 
individuals are elite controllers 



Genome-wide association studies: host HLA is the 
most significant determinant of outcome 
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Pereyra et al, Science, 2010 



0 20 40 60 80 100
101

102

103

104

105

106

107

10,000 RNA copies/ml

2,000 RNA copies/ml

6VC

Non-protective 

HLA class I alleles

Time point (Months from enrollment)

V
ir

a
l 

L
o
a
d

 L
o
g

H
IV

 R
N

A
 c

o
p

ie
s/

m
l

Controllers without protective HLA class I alleles more 
likely to maintain viral control 

0 20 40 60 80 100
101

102

103

104

105

106

107

10,000 RNA copies/ml

2,000 RNA copies/ml

7fVC

(Protective HLA

 class I alleles)

7VC

(Protective HLA 

class I alleles)

Time point (Months from enrollment)

V
ir

a
l 

L
o
a
d

 L
o
g

H
IV

 R
N

A
 c

o
p

ie
s/

m
l

Controllers with protective 
HLA alleles 

Controllers without protective 
HLA alleles 



Viremic controllers with protective HLA alleles have 
broad anti-Gag responses compared to non-controllers 
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CD4+ T-cells 
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HIV CD8+ T-cells 
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• HIV controllers with protective HLA alleles appear to 
have a CD8+ T cell-mediated mechanism of control  

 

• Controllers without protective alleles have an 
alternative, more durable mechanism of HIV control. 

 

• Understanding the mechanisms of control in acute 
HIV infection and in controllers may lead to novel 
prophylactic or therapeutic interventions 

Conclusions III 
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